Abstract
Very recent criticisms of existing exchange-correlation functionals by Wanko et al. applied to systems of biological interest have led us to reopen the question of the ground-state conformer of glycine: the simplest amino acid. We immediately show that the global minimum of the Hartree–Fock (HF) ground-state leads to a planar structure of the five non-hydrogenic nuclei, in the non-ionized form NH2–CH2–COOH. This is shown to lie lower in energy than the zwitterion structure NHB3 +–CH2–COO−, as required by experiment. Refinement of the nuclear geometry using second-order Møller–Plesset perturbation theory (MP2) is also carried out, and bond lengths are found to accord satisfactorily with experimentally determined values. The ground-state electron density for the MP2 geometry is then redetermined by HF theory and equidensity contours are displayed. The HF first-order density matrix γ( r , r ′) is then used to obtain similar exchange-energy density (ε x ( r )) contours for the lowest conformer of glycine. At first sight, their shape looks almost the same as for the density ρ( r ), which seems to vindicate the LDA proportional to ρ( r )3/4. However, by way of an analytically soluble model for an atomic ion, it is shown that this has to be corrected to obtain an accurate HF exchange energy Ex as the volume integral of ε x ( r ). Finally, recognizing that for larger amino acids, the use of HF plus MP2 perturbation corrections will become prohibitive, we have used the HF information for ε x ( r ) and ρ( r ) to plot the truly non-local exchange potential proposed by Slater, from the density matrix γ( r , r ′). This latter calculation should be practicable for large amino acids, but there adopting Becke's one-parameter form of ε x ( r ) correcting LDA exchange. Some future directions are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.