Abstract
Hard/soft interface plays a role in the properties of the composite metal-based magnets, while it is less talked in the composite permanent oxide magnets on the magnetic interaction and properties due to easy interdiffusion. Here, multilayer thin films composed with hard CoFe2O4 phase and soft La0.7Sr0.3MnO3 layers were choose and synthesized without interdiffusion by a chemical solution method. Furthermore, the effects of the annealing temperature and the number of soft layer on the magnetic interaction and properties are investigated. All composite films behavior as one rigidly coupled composite magnet at room temperature, and the magnetic properties increase with increasing annealing temperature. The coercivity and maximum magnetic energy product can respectively reach 8.27 kOe and 2.4 MG Oe at the temperature of 300 K. Exchange coupling was effectively enhanced and even dominate the magnetic interaction with less soft layers for the in-plane direction. Conversely, dipolar interaction predominates, but becomes weak in the composite films with more soft layers and attenuates with increasing annealing temperature for the out-of-plane direction. All of the results suggest that a suitable grain size of the hard phase and an improved interface may be more important for a rigidly coupled composite oxide magnet with good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.