Abstract
The exchange-correlation potentials stemming from the local-density approximation and several generalized-gradient approximations are known to have incorrect asymptotic decay. This failure is independent of the dimensionality but so far the problem has been corrected---within the mentioned approximations---only in three dimensions. Here we provide a cured exchange-correlation potential for two-dimensional harmonically confined systems that cover a wide range of applications in quantum Hall and semiconductor physics, especially in quantum-dot modeling. The given potential is a generalized-gradient approximation and we demonstrate that it agrees very well with the analytic result of a two-electron quantum dot in the asymptotic regime, and yields plausible results for larger two-dimensional systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.