Abstract
Warm dense matter is a highly energetic phase characterized by strong correlations, thermal effects, and quantum mechanical electrons. Thermal density functional theory is commonly used in simulations of this challenging phase, driving the development of temperature-dependent approximations to the exchange–correlation free energy. Approaches using the adiabatic connection formula are well known at zero temperature and have been recently leveraged at non-zero temperatures as well. In this work, a generalized thermal adiabatic connection (GTAC) formula is proposed, introducing a fictitious temperature parameter. This allows extraction of the exchange–correlation entropy SXC using simulated interaction strength scaling. This procedure uses a Hellmann–Feynman approach to express the exchange–correlation entropy in terms of a temperature- and interaction strength-dependent exchange–correlation potential energy. In addition, analysis of SXC as a function of interaction strength suggests new forms for approximations, and GTAC itself offers a new framework for exploring both the exact and approximate interplay of temperature, density, and interaction strength across a wide range of conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.