Abstract
Semilocal density functional approximations occupy the second rung of the Jacob's ladder model and are thus expected to have certain limits to their applicability. A recent study [Y. Zhang, G. Kresse, and C. Wolverton, Phys. Rev. Lett. 112, 075502 (2014)] hypothesizes that the formation energy, being one of the key quantities in alloy theory, would be beyond the grasp of semilocal density functional theory (DFT). Here, we explore the physics of semilocal DFT formation energies and shed light on the connection between the accuracy of the formation energy and the ability of a semilocal approximation to produce accurate lattice constants. We demonstrate that semilocal functionals designed to perform well for alloy constituents can concomitantly solve the problem of alloy formation energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.