Abstract

Single-molecule magnets (SMMs) have been shown to possess bewildering phenomena leading to their proposal in several futuristic applications ranging from data storage devices to the basic unit of quantum computers. The main characteristic for the proposal of SMMs in such schemes is their inherent and intriguing quantum mechanical properties, which in turn, could be exploited in novel devices with larger capacities, such as for data storage or enhanced properties, such as quantum computers. In the quest of SMMs displaying such intriguing quantum effects, herein, we explore the synthesis, structural, and magnetic characterization of a dimeric dysprosium-based SMM composed of a tetradentate Schiff-base ligand with formula [Dy2(HL)2(benz)2(NO3)2]. Magnetic studies show that the complex is an SMM, while sub-Kelvin μ-SQUID studies revealed the exchange-bias characteristics of the system attributed to the presence of exchange interaction between the Dy3+ pair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call