Abstract

We perform modified Monte Carlo simulations on a ferromagnetic/antiferromagnetic bilayer structure with adjustable antiferromagnetic anisotropy and degree of exchange coupling. Generally, both the antiferromagnetic anisotropy and the degree of exchange coupling at the ferromagnetic/antiferromagnetic interface are difficult to be directly detected experimentally. However, they may play crucial roles in establishing the exchange bias properties through determining whether the antiferromagnetic spins at the interface are rotatable or pinned. Therefore, we precisely calculated the numbers of rotatable and pinned antiferromagnetic spins at the interface and analyzed their contribution to exchange bias and coercivity in the specified ranges of antiferromagnetic anisotropy and degree of exchange coupling. The simulation results may help to clarify the experimental controversies concerning the occurrence of exchange bias effect prior to the detection of pinned uncompensated antiferromagnetic spins. They can also be used to properly interpret the dependence of exchange bias on several-nanometer antiferromagnetic layer thicknesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call