Abstract

Exchange bias and coercivity in ferromagnet/antiferromagnet antidot arrays magnetized perpendicularly are simulated to demonstrate the mechanism of their variations in specific nanostructures, using a modified Monte Carlo Metropolis algorithm. Three kinds of antidot array models characterized by different morphologies in the vicinity of pore are established and their magnetization behaviors are compared with that in the continuous film. An increase in the exchange bias field with a suppressed coercivity is obtained if the antiferromagnet covers the wall of pore entirely. By means of the results of the spin configurations, it is found that only the heterostructure component, e.g., the antiferromagnet can cut off the domain in the ferromagnet layer into small sizes effectively, and thus increases the pinning effect to the ferromagnet and changes the nucleation field. Moreover, the thermal stability of exchange bias in the antidot arrays is not enhanced and the coercivity is nonmonotonic with increasing temperature probably due to the magnetic field applied perpendicular to the film plane. We suggest that our numerical findings are also suitable for other nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.