Abstract

Co/CoO nanocomposite thin films have been deposited by RF sputtering with different oxygen partial pressures in the working atmosphere. It has been found that the magnetic properties (exchange bias (EB), coercivity and remanence) of the films are strongly dependent on the oxygen partial pressure. Film deposited with an O2 pressure of 0.75×10−5Torr shows a relatively high coercivity and high remanence ratio. Enhanced asymmetry of magnetization reversal appears in the film deposited with 1.5×10−5Torr O2 partial pressure. When the O2 partial pressure is increased to 3.0×10−5Torr, a strong reduction in EB and coercivity have been obtained. The investigation of the microstructure using high-resolution transmission electron microscope reveals that the change in EB, remanence and coercivity is probably related to the competition between dipolar interaction and exchange coupling. Magnetoresistance and extraordinary Hall effect (EHE) of the Co/CoO nanocomposite films is also investigated in dependence on oxygen partial pressure. The film deposited under 2.3×10−5Torr of oxygen exhibits strongly enhanced asymmetric magnetization reversal and unusually high EHE with a high coercivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.