Abstract

Monte Carlo simulations have been performed to investigate the dependence of the dynamic phase behavior on the bilinear exchange anisotropy of a classical Heisenberg spin system. The system under consideration is a planar thin ferromagnetic film with competing surface fields subject to a pulsed oscillatory external field. The results show that the films exhibit a single discontinuous dynamic phase transition (DPT) as a function of the anisotropy of the bilinear exchange interaction in the Hamiltonian. Furthermore, there is no evidence of stochastic resonance associated with the DPT. These results are in marked contrast to the continuous DPT observed in the same system as a function of temperature and applied field strength for a fixed bilinear exchange anisotropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call