Abstract

We study the excessive levitation effect in the magnetically levitated loading process of ultracold Cs atoms into a large-volume crossed optical dipole trap. We analyze the motion of atoms with a non-zero combined gravito-magnetic force during the loading, where the magnetically levitated force catches up with and surpasses the gravity. We present the theoretical variations of both acceleration and velocity with levitation time and magnetic field gradient. We measure the evolution of the number of trapped atoms with the excessive levitation time at different magnetic field gradients. The dependence of the number of atoms on the magnetic field gradient is also measured for different excessive levitation times. The theoretical analysis shows reasonable agreement with the experimental results. Our investigation illustrates that the excessive levitation can be used to reduce the heating effect of atoms in the magnetically levitated loading process, and to improve the loading rate of a large-volume optical dipole trap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call