Abstract

Free radical grafting and oxidative modification show superiority in myofibrillar protein (MP) aggregation patterns during salting process, but their consequent formation mechanisms of protein hydration network require further evaluation. Herein, we explored the effect of salt-curing (0, 1, 3 and 5 %) on MP protein polymer substrate, water-protein interaction, crystallization events and thermal stability under H2O2/ascorbate-based hydroxyl radical (•OH)-generating system (HRGS) (1, 10, 20 mM H2O2). Results showed that moderate salting (≤3%) favored the water binding of MP gels during the oxidation course. Accordingly, the maximum thermal stability (Tm) of MP gels was obtained at 3 % salting could be greatly attributed to the protein chain solubilization and refolding process. However, 5 % salt synergized with •OH oxidation intensified diffraction peak 2 (the most striking diffraction feature). Microstructural analysis validated a maximum compactness of MP gel following brining with 5 % salt at potent oxidation strength (20 mM H2O2). This study maybe promises efficient strategy to the myogenetic fibril products and biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.