Abstract

AimsThe present study verified the responses of selected endoplasmic reticulum (ER) stress proteins (i.e., BiP, ATF-6, pIRE1, pPERK, and peIF2alpha) in mice skeletal muscles after three different running overtraining (OT) protocols with same external load (i.e., intensity vs. volume), but performed in downhill, uphill and without inclination. Materials and methodsThe rodents were randomly divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR) groups. The incremental load test and exhaustive test were used as performance parameters. Forty hours after the exhaustive test performed at the end of the OT protocols (i.e., at the end of week 8) and after a 2-week total recovery period (i.e., at the end of week 10), the extensor digitorum longus (EDL) and soleus muscles were removed and used for immunoblotting. Key findingsFor both skeletal muscle types, the OTR/down protocol increased the pIRE-1, pPERK and peIF2alpha, which were not normalized after the total recovery period. At the end of week 8, the other two OT protocols up-regulated the BiP, pPERK and peIF2alpha levels only for the soleus muscle. These ER stress proteins were not normalized after the total recovery period for the OTR/up group. SignificanceThe above findings suggest that the OTR/down protocol-induced skeletal muscle ER stress may be linked to a pathological condition in EDL and soleus muscles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.