Abstract
ObjectivesWe sought to elucidate how the local activation of matrix metalloproteinases (MMPs) is balanced by that of the endogenous tissue inhibitors of MMP (TIMPs) during left ventricular (LV) remodeling. BackgroundAlthough it is known that the extracellular matrix (ECM) must be altered during LV remodeling, its local regulation has not been fully elucidated. MethodsIn Dahl salt-sensitive rats with hypertension, in which a stage of concentric, compensated left ventricular hypertrophy (LVH) at 11 weeks is followed by a distinct stage of congestive heart failure (CHF) with LV enlargement and dysfunction at 17 weeks, we determined protein and messenger ribonucleic acid (mRNA) levels of LV myocardial TIMP-2 and -4 and MMP-2, as well as their concomitant activities. ResultsNo changes were found at the LVH stage. However, during the transition to CHF, TIMP-2 and -4 activities, protein and mRNA levels were all sharply increased. At the same time, the MMP-2 mRNA and protein levels and activities, as determined by gelatin zymography, as well as by an antibody capture assay, showed a substantial increase during the transition to CHF. The net MMP activities were closely related to increases in LV diameter (r = 0.763) and to systolic wall stress (r = 0.858) in vivo. ConclusionsBoth TIMPs and MMP-2 remained inactive during hypertrophy, per se; they were activated during the transition to CHF. At this time, the activation of MMP-2 surpassed that of TIMPs, possibly resulting in ECM breakdown and progression of LV enlargement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.