Abstract

The tetragonality and carbon distribution in tempered Fe-0.6C-1Mn martensite were investigated by X-ray diffraction and atom probe tomography to elucidate strain relaxation in the tetragonal lattice during tempering and its relationship with the solubility of excess carbon in martensite. Even though tetragonality (c/a) decreased with an increase in the tempering temperature, it persisted at low levels up to 400 °C. Si addition suppressed the decrease in tetragonality at 400 °C by inhibiting recovery in the dislocated matrix. Such persistence implies that dislocation migration is crucial for the complete release of tetragonal lattice strain at such a temperature, in addition to the decrease in the amount of solute carbon in martensite. A low level of tetragonality was observed for martensite containing carbon in the solid solution below the critical value of ~ 0.2 mass pct, at which a bcc structure was predicted. The amount of solute carbon after tempering was linearly correlated with tetragonality in the solute carbon content range of 0.07 to 0.6 mass pct, and the correlation coefficient was similar to those for as-quenched auto-tempered martensite and bainitic ferrite; these results indicate that the amount of excess carbon is simply determined by the amount of tetragonal lattice distortions remaining after carbide precipitation and recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.