Abstract
AbstractThis paper investigates robust versions of the general empirical risk minimization algorithm, one of the core techniques underlying modern statistical methods. Success of the empirical risk minimization is based on the fact that for a ‘well-behaved’ stochastic process $\left \{ f(X), \ f\in \mathscr F\right \}$ indexed by a class of functions $f\in \mathscr F$, averages $\frac{1}{N}\sum _{j=1}^N f(X_j)$ evaluated over a sample $X_1,\ldots ,X_N$ of i.i.d. copies of $X$ provide good approximation to the expectations $\mathbb E f(X)$, uniformly over large classes $f\in \mathscr F$. However, this might no longer be true if the marginal distributions of the process are heavy tailed or if the sample contains outliers. We propose a version of empirical risk minimization based on the idea of replacing sample averages by robust proxies of the expectations and obtain high-confidence bounds for the excess risk of resulting estimators. In particular, we show that the excess risk of robust estimators can converge to $0$ at fast rates with respect to the sample size $N$, referring to the rates faster than $N^{-1/2}$. We discuss implications of the main results to the linear and logistic regression problems and evaluate the numerical performance of proposed methods on simulated and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.