Abstract

The high-voltage 4H-SiC Schottky diodes are fabricated with a nickel barrier and a guard system in the form of “floating” planar p-n junctions. The analysis of I–V characteristics measured in a wide temperature range shows that the forward current is caused by thermionic emission; however, the current is “excessive” in the reverse direction. It is assumed that the reverse current flows locally through the points of the penetrating-dislocation outcrop to the Ni-SiC interface. The shape of reverse I–V characteristics makes it possible to conclude that the electron transport is governed by the monopolar-injection mechanism (the space-charge limited current) with participation of capture traps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call