Abstract
Controlling the ferroelectricity and magnetism in multiferroic materials has been an important research topic. We report the formation of a highly polarized state in multiferroic DyMnO3 single crystals which develops well above the magnetic transition temperatures, and we attribute it to the thermally stimulated depolarization current effect of excess holes forming Mn4+ ions in the system. We also show that this high temperature polarized state intimately correlates with the lower temperature ferroelectric state that is induced by the incommensurate spiral magnetic order of Mn spins. This study demonstrates an efficient approach to tune the multiferroicity in the manganite system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.