Abstract

Adsorption of fibrinogen to the monolayers of mixed lipids, dipalmitoyl phosphatidyl choline (DPPC) and eicosylamine (EA) was measured at a surface pressure of 20 mN/m by an in situ surface plasmon resonance technique. Pressure–area isotherms of DPPC + EA mixtures on water and buffer subphases indicated good lipid miscibility and some contraction of the monolayers at intermediate and higher surface pressures. Surface electric potential of the DPPC + EA monolayers showed excess values for intermediate DPPC:EA ratios. Fibrinogen adsorption and its adsorption rates from a dilute solution (0.03 mg/ml) were proportional to the fraction of EA in the monolayer indicating that protein binding was primarily driven by electrostatic interactions between positive EA charges in the monolayer and a net negative protein charge. At a higher protein concentration (0.06 mg/ml) both the fibrinogen adsorbed amount and its maximum adsorption rate showed excess values relative to the pure EA for 1:1, 2:1 and 3:1 DPPC + EA monolayers. This excess adsorption could be explained, in part, by the contraction of the monolayers with intermediate DPPC:EA ratios which resulted in an excess surface electric potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.