Abstract

The regime of validity of Rosenfeld excess entropy scaling of diffusivity and viscosity is examined for two tetrahedral, network-forming ionic melts (BeF(2) and SiO(2)) using molecular dynamics simulations. With decrease in temperature, onset of local caging behavior in the diffusional dynamics is shown to be accompanied by a significant increase in the effect of three-body and higher-order particle correlations on the excess entropy, diffusivity, ionic conductivity, and entropy-transport relationships. The signature of caging effects on the Rosenfeld entropy scaling of transport properties is a distinctly steeper dependence of the logarithm of the diffusivity on the excess entropy in ionic melts. This is shown to be true also for a binary Lennard-Jones glassformer, based on available results in the literature. Our results suggest that the onset of a landscape-influenced regime in the dynamics is correlated with this characteristic departure from Rosenfeld scaling. The breakdown of the Nernst-Einstein relation in the ionic melts can also be correlated with the emerging cooperative dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.