Abstract
Magnetoelectric (ME) properties in yttrium iron garnet $(\text{YIG}:{\text{Y}}_{3}{\text{Fe}}_{5}{\text{O}}_{12})$, including both the first-order and second-order effects, have long been under dispute. In particular, the conflict between observations of the first-order ME effect and the centrosymmetric lattice structure has remained as a puzzling issue. As a key to solve the problem, we found that YIG shows quantum ME relaxation; the dielectric relaxation process is correlated closely with the magnetic one and has characteristic features of quantum tunneling. An application of magnetic field enhances the dielectric relaxation strength (by 300% at 10 K with 0.5 T), which gives rise to the large second-order ME (magnetocapacitance) effect critically dependent on the magnetization direction. The temperature and magnetic-field dependence of dielectric relaxation strength is well described by the noninteracting transverse-field Ising model for the excess-electron or ${\text{Fe}}^{2+}$ center with the quantum tunneling and spin-orbit coupling effects. We could also spectroscopically identify such a ME ${\text{Fe}}^{2+}$ center in terms of linear dichroism under a magnetic field along the specific direction. On this basis, the fictitious first-order ME effect---the magnetic-field induced electric polarization without the presence of external electric field---as observed for the electric-field cooled sample is ascribed to the combined effect of the above large second-order ME effect and the poling induced charge accumulation. The correlation between the ME effect and the thermally stimulated depolarization current indicates that hopping electrons freeze below around 125 K and the frozen-in dipoles generate an internal electric field (i.e., an electret-like effect). Investigation of electron-compensating doping effect on dielectric relaxation phenomena gives compelling evidences that excess electrons forming ${\text{Fe}}^{2+}$ ions play a critical role in the charge accumulation as well as in the ME effect in YIG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.