Abstract

The anionic complexes of formic acid with uracil and thymine reveal broad features in photoelectron spectroscopy (PES) experiments with maxima at 1.7 and 1.1 eV, respectively. The results of quantum chemical calculations suggest that electron vertical detachment energies (VDE) of 1.6−1.9 eV correspond to anionic structures in which a proton has been transferred from the carboxylic group of the formic acid to the O8 atom of uracil or thymine. Smaller values of VDE (0.8 to 1.3 eV) correspond to chemically untransformed complexes, in which anionic uracil or thymine interacts through two hydrogen bonds with the carboxylic group of the intact formic acid. The recorded spectra and the results of quantum chemical calculations suggest that both nucleic acid bases undergo barrier-free proton transfer in anionic complexes with formic acid. The difference in experimental spectra of UF- and TF- provides an indication that the methyl group of thymine could make a difference in the intermolecular proton transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call