Abstract

The effects of strain-induced structural defects in a nipi-doped In0.2Ga0.8As/GaAs multiple-quantum well sample were studied with time-resolved electron-beam-induced absorption modulation, in which carrier recombination lifetimes and ambipolar diffusion constants are measured with high spatial, spectral, and temporal resolution. Based on a phenomenological model, carrier lifetimes in the limit of weak excitation at room temperature were determined. The lifetime is found to be reduced by a factor of ∼1013 compared to a theoretically calculated value, owing to the presence of strain-induced defects and alternate recombination channels. By using a two-dimensional diffusion model, the ambipolar diffusion coefficients Da along high-symmetry [110], [11̄0], and [100] directions were determined and resulted in an anisotropic behavior such that D[110]a≳D[11̄0]a ≳D[100]a. The anisotropy in diffusion is attributed to corresponding asymmetries in the misfit dislocation density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.