Abstract

Li2FeTiO4 composites have been produced using commercial LiAC, FeCl2 and different titanium sources by hydrothermal synthesis (HS) at 175 °C and subsequent annealing at 700 °C. Impure phase TiO2, Fe2O3 and FeTiO4 were detected out among the Li2FeTiO4 composites with different titanium sources. Micron and nano-sized particles of Li2FeTiO4 were prepared from various titanium raw materials, with nano-sized particles predominating when titanium raw materials were layered hydrogen titanate nanowire (H2Ti3O7NW, HTO-NW) and titanium oxide nanotubes (TiO2NB). The Li2FeTiO4 composites synthesized by HTO-NW shows a primary particle size of 50−200 nm of high crystallinity staggered with undissolved nanowire with a diameter size of about 100 nm. The samples using one-dimensional nanometer titanium oxide (TiO2 NB) as the raw material can get a super high initial discharge capacity of 367.8 mAh/g at the rate of C/10 and excellent cycling stability. The selection of raw materials and adopting multi-phase modification can be considered as an effective strategy to improve the electro-chemical properties of Li2FeTiO4 composite cathode materials for the lithium secondary battery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call