Abstract

In this work, we assess the accuracy of the Bethe-Salpeter equation (BSE) many-body Green's function formalism, adopting the eigenvalue-self-consistent evGW exchange-correlation kernel, for the calculation of the excited-state (μES) and excess dipole moments (Δμ), the latter ones being the changes of dipole amplitude between the ground and excited states (ES), in organic dyes. We compare the results obtained with wave-function methods [ADC(2), CC2, and CCSD], time-dependent density functional theory (TD-DFT), and BSE/evGW levels of theory. First, we compute the evolution of the dipole moments of the two lowest singlet excited states of 4-(dimethylamino)benzonitrile (DMABN) upon twisting of the amino group. Next, we use a set of 25 dyes having ES characters ranging from locally excited to charge transfer to determine both μES and Δμ. For DMABN our results show that BSE/evGW provides Δμ values closer to the CCSD reference and more consistent trends than TD-DFT. Moreover, a statistical analysis of both Δμ and μES for the set of 25 dyes shows that the BSE/evGW accuracy is comparable or sometimes slightly better than that of TD-M06-2X and TD-CAM-B3LYP, BSE/evGW outperforming TD-DFT in challenging cases (zwitterionic and cyanine transitions). Finally, the starting point dependency of BSE/evGW seems to be larger for Δμ, ES dipoles, and oscillator strengths than for transition energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call