Abstract
Extreme pressure conditions reveal fundamental insights into the physical properties of elemental metals that are otherwise not evident under ambient conditions. Herein, we use the density functional perturbation theory to demonstrate that the change in thermal conductivity as a result of large hydrostatic pressures at room temperature for aluminum is the largest of any known material. More specifically, in comparison to ambient conditions, we find that the change in thermal conductivity for aluminum is greater than the relative changes in thermal conductivities of diamond and cubic boron nitride combined, which are two of the most thermally conductive bulk materials known to date. We attribute this to the relatively larger increase in mean free paths and lifetimes of electrons in aluminum as a result of weaker electron-phonon coupling at higher pressures. Our work reveals direct insights into the exceptional electronic transport properties of pressurized aluminum and advances a broad paradigm for understanding thermal transport in metals under extreme pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.