Abstract

The single-atom sites (SAs) have achieved enhanced performance toward oxygen reduction reaction (ORR) with the effective utilization of the active sites. However, the excess adsorption of the intermediates and the limited stability hinders performance improvement. Metal clusters with promising stability and weak adsorption can be used as potential substitutions, but the lack of active sites is considered undesirable for catalytic reactions. Herein, a framework of Fe nanoclusters combined with SAs on One dimensional (1D)carbon nanotubes (Fe3C-NCNTs 90minCC-1) is synthesized to confirm the synergistic atom-cluster interaction. The composite exhibits strong polarization and electron redistribution between nanocluster and SAs. The electron redistribution will significantly boost the electron transport and the desorption of the intermediates, which is confirmed by off-axis holography and DFT calculation. The electrocatalytic performance is significantly enhanced as the half-wave potential of ORR increased 75mV and the potential of OER increased 133mV compared with the sample without nanoclusters. Furthermore, such a bifunctional catalyst endows homemade Zn-air batteries (ZABs) with high power density and long-term stability. This work paves a facile route to design bifunctional ORR/OER electrocatalysts consisting of 0D composite structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call