Abstract

Intrinsic defects in optomechanical devices are generally viewed to be detrimental for achieving coherent amplification of phonons, and great care has thus been exercised in fabricating devices and materials with no (or a minimal number of) defects. Contrary to this view, here we show that, by surpassing an exceptional point (EP), both the mechanical gain and the phonon number can be enhanced despite increasing defect losses. This counterintuitive effect, well described by an effective non-Hermitian phonon-defect model, provides a mechanical analog of the loss-induced purely optical lasing. This opens the way to operating random-defect phonon devices at EPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.