Abstract
Optical sensors, crucial in diverse fields like gravitational wave detection, biomedical imaging, and structural health monitoring, rely on optical phase to convey valuable information. Enhancing sensitivity is important for detecting weak signals. Exceptional points (EPs), identified in non-Hermitian systems, offer great potential for advanced sensors, given their marked response to perturbations. However, strict physical requirements for operating a sensor at EPs limit broader applications. Here, we introduce an EP-enhanced sensing platform featuring plug-in external sensors separated from an EP control unit. EPs are achieved without modifying the sensor, solely through control-unit adjustments. This configuration converts and amplifies optical phase changes into quantifiable spectral features. By separating sensing and control functions, we expand the applicability of EP enhancement to various conventional sensors. As a proof-of-concept, we demonstrate a sixfold reduction in the detection limit of fiber-optic strain sensing using this configuration. This work establishes a universal platform for applying EP enhancement to diverse phase-dependent structures, promising ultrahigh-sensitivity sensing across various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.