Abstract

Inorganic semiconductors are vital for a number of critical applications but are almost universally brittle. Here, we report the superplastic deformability of indium selenide (InSe). Bulk single-crystalline InSe can be compressed by orders of magnitude and morphed into a Möbius strip or a simple origami at room temperature. The exceptional plasticity of this two-dimensional van der Waals inorganic semiconductor is attributed to the interlayer gliding and cross-layer dislocation slip that are mediated by the long-range In-Se Coulomb interaction across the van der Waals gap and soft intralayer In-Se bonding. We propose a combinatory deformability indicator (Ξ) to prescreen candidate bulk semiconductors for use in next-generation deformable or flexible electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.