Abstract

Ozone (O3) pollution is highly detrimental to human health and the ecosystem due to it being ubiquitous in ambient air and industrial processes. Catalytic decomposition is the most efficient technology for O3 elimination, while the moisture-induced low stability represents the major challenge for its practical applications. Here, activated carbon (AC) supported δ-MnO2 (Mn/AC-A) was facilely synthesized via mild redox in an oxidizing atmosphere to obtain exceptional O3 decomposition capacity. The optimal 5Mn/AC-A achieved nearly 100% of O3 decomposition at a high space velocity (1200 L g-1 h-1) and remained extremely stable under entire humidity conditions. The functionalized AC provided well-designed protection sites to inhibit the accumulation of water on δ-MnO2. Density functional theory (DFT) calculations confirmed that the abundant oxygen vacancies and a low desorption energy of intermediate peroxide (O22-) can significantly boost O3 decomposition activity. Moreover, a kilo-scale 5Mn/AC-A with low cost (∼1.5 $/kg) was used for the O3 decomposition in practical applications, which could quickly decompose O3 pollution to a safety level below 100 μg m-3. This work offers a simple strategy for the development of moisture-resistant and inexpensive catalysts and greatly promotes the practical application of ambient O3 elimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.