Abstract

Achieving an improved understanding of catalyst properties, with ability to predict new catalytic materials, is key to overcoming the inherent limitations of metal oxide based gas sensors associated with rather low sensitivity and selectivity, particularly under highly humid conditions. This study introduces newly designed bimetallic nanoparticles (NPs) employing bimetallic Pt-based NPs (PtM, where M = Pd, Rh, and Ni) via a protein encapsulating route supported on mesoporous WO3 nanofibers. These structures demonstrate unprecedented sensing performance for detecting target biomarkers (even at p.p.b. levels) in highly humid exhaled breath. Sensor arrays are further employed to enable pattern recognition capable of discriminating between simulated biomarkers and controlled breath. The results provide a new class of multicomponent catalytic materials, demonstrating potential for achieving reliable breath analysis sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call