Abstract
We develop exceptional field theory for E$_{8(8)}$, defined on a (3+248)-dimensional generalized spacetime with extended coordinates in the adjoint representation of E$_{8(8)}$. The fields transform under E$_{8(8)}$ generalized diffeomorphisms and are subject to covariant section constraints. The bosonic fields include an `internal' dreibein and an E$_{8(8)}$-valued `zweihundertachtundvierzigbein' (248-bein). Crucially, the theory also features gauge vectors for the E$_{8(8)}$ E-bracket governing the generalized diffeomorphism algebra and covariantly constrained gauge vectors for a separate but constrained E$_{8(8)}$ gauge symmetry. The complete bosonic theory, with a novel Chern-Simons term for the gauge vectors, is uniquely determined by gauge invariance under internal and external generalized diffeomorphisms. The theory consistently comprises components of the dual graviton encoded in the 248-bein. Upon picking particular solutions of the constraints the theory reduces to D=11 or type IIB supergravity, for which the dual graviton becomes pure gauge. This resolves the dual graviton problem, as we discuss in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.