Abstract
BackgroundThe standard genetic code is redundant and has a highly non-random structure. Codons for the same amino acids typically differ only by the nucleotide in the third position, whereas similar amino acids are encoded, mostly, by codon series that differ by a single base substitution in the third or the first position. As a result, the code is highly albeit not optimally robust to errors of translation, a property that has been interpreted either as a product of selection directed at the minimization of errors or as a non-adaptive by-product of evolution of the code driven by other forces.ResultsWe investigated the error-minimization properties of putative primordial codes that consisted of 16 supercodons, with the third base being completely redundant, using a previously derived cost function and the error minimization percentage as the measure of a code's robustness to mistranslation. It is shown that, when the 16-supercodon table is populated with 10 putative primordial amino acids, inferred from the results of abiotic synthesis experiments and other evidence independent of the code's evolution, and with minimal assumptions used to assign the remaining supercodons, the resulting 2-letter codes are nearly optimal in terms of the error minimization level.ConclusionThe results of the computational experiments with putative primordial genetic codes that contained only two meaningful letters in all codons and encoded 10 to 16 amino acids indicate that such codes are likely to have been nearly optimal with respect to the minimization of translation errors. This near-optimality could be the outcome of extensive early selection during the co-evolution of the code with the primordial, error-prone translation system, or a result of a unique, accidental event. Under this hypothesis, the subsequent expansion of the code resulted in a decrease of the error minimization level that became sustainable owing to the evolution of a high-fidelity translation system.ReviewersThis article was reviewed by Paul Higgs (nominated by Arcady Mushegian), Rob Knight, and Sandor Pongor. For the complete reports, go to the Reviewers' Reports section.
Highlights
The standard genetic code is redundant and has a highly non-random structure
It is not unrealistic to propose that the primordial genetic code consisted of 16 supercodons (4-codon series, XYN) and encoded 16 or fewer amino acids, possibly, the 10 inferred early amino acids listed above (1)
At a particular early stage of evolution, the primordial genetic code consisted of 16 supercodons, we postulate the following 'parsimony principle': If the primordial code encoded an amino acid, this amino acid was encoded by the same supercodon that encodes the same amino acid in the standard genetic code
Summary
The standard genetic code is redundant and has a highly non-random structure. Codons for the same amino acids typically differ only by the nucleotide in the third position, whereas similar amino acids are encoded, mostly, by codon series that differ by a single base substitution in the third or the first position. One of the central principles of Darwinian evolution is that complex systems evolve from simple ancestors, typically if not always, via a succession of relatively small, incremental steps each of which increases fitness or at least does not lead to a decrease in fitness [5]. In conformity with this continuity principle [6,7], it appears almost certain that the genetic code employed by the primordial translation system was substantially simpler than the modern code, which evolved incrementally. The results of these experiments are remarkably coherent and lead to the same list of standard amino acids that can be produced under emulated primordial conditions: Gly, Ala, Asp, Glu, Val, Ser, Ile, Leu, Pro, Thr (1)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.