Abstract
Enhancing the strength of metallic laminates through decreasing the constituent layer thickness from micrometer to nanometer scale is usually accompanied by the degradation of ductility because plastic instability characterized by fatal shear bands inevitably occurs in the early stage of deformation. To overcome the strength-ductility trade-off dilemma, we designed a kind of metallic layered composites (LCs) consisting of nano-grained Ni (grain size: 21–37 nm) and ultrafine nano-grained Ni-W (grain size: 8 nm) constituent layers with layer thickness ranging from microns to tens of nanometers. We found that the strength and ductility of Ni/Ni-W LCs can be simultaneously enhanced by decreasing the layer thickness. Interface-constrained grain growth in the Ni layers with an initial layer thickness of less than 1 μm enhances strain hardening ability. Thus, strain delocalization characterized by the formation of rectangular strain zones instead of crossed micro shear bands appears in the LCs. Based on the above mechanism, we obtained the optimum ratio of the layer thickness to the grain size for the nano-grained Ni layers as about 15:1, which corresponds to Ni0.25/Ni-W0.025 LCs with the highest tensile strength (1.9 GPa) and elongation to failure (5.5 %). These findings may provide a new path for the design principle of metallic LCs with multi-level microstructural and geometrical scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.