Abstract
Exceptional points (EPs) are spectral degeneracies of non-Hermitian (NH) systems where eigenvalues and eigenvectors coalesce, inducing unique topological phases that have no counterpart in the Hermitian realm. Here we consider an NH system by coupling a two-dimensional semiconductor with Rashba spin–orbit coupling (SOC) to a ferromagnet lead and show the emergence of highly tunable EPs along rings in momentum space. Interestingly, these exceptional degeneracies are the endpoints of lines formed by the eigenvalue coalescence at finite real energy, resembling the bulk Fermi arcs commonly defined at zero real energy. We then show that an in-plane Zeeman field provides a way to control these exceptional degeneracies although higher values of non-Hermiticity are required in contrast to the zero Zeeman field regime. Furthermore, we find that the spin projections also coalescence at the exceptional degeneracies and can acquire larger values than in the Hermitian regime. Finally, we demonstrate that the exceptional degeneracies induce large spectral weights, which can be used as a signature for their detection. Our results thus reveal the potential of systems with Rashba SOC for realizing NH bulk phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.