Abstract

We study theories with the exceptional gauge group G(2). The 14 adjoint “gluons” of a G(2) gauge theory transform as {3}, { 3 ̄ } and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a “quark” in the {7} representation of G(2) can be screened by “gluons”. As a result, in G(2) Yang–Mills theory the string between a pair of static “quarks” can break. In G(2) QCD there is a hybrid consisting of one “quark” and three “gluons”. In supersymmetric G(2) Yang–Mills theory with a {14} Majorana “gluino” the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined–confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.