Abstract

On quadrics in large positive characteristic we construct an exceptional collection of sheaves from the G1P-Verma module associated to the Frobenius direct image of the structure sheaf of the quadric. They are all locally free of finite rank and defined over Z, producing Kapranov’s collection over C by base change. We also determine on a general homogeneous projective variety in large positive characteristic a direct summand of the Frobenius direct image of the structure sheaf, which is “dual” to the celebrated Frobenius splitting of Mehta and Ramanathan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.