Abstract

Phenanthrene (PTH) and 9-phenanthrol (9-PTH) exhibited severe health threats and ecological hazards, for this reason, exploring a high-efficient removing strategy for PTH and 9-PTH could be considered of great urgency. Herein the 4,4'-biphenyldicarboxaldehyde m-phenylenediamine Schiff base magnetic polymer (magnetic BIPH-PHEN) was successfully fabricated via Schiff base polycondensation reaction and the subsequently one-pot embedded method. The mutual aromatic nucleus of BIPH-PHEN polymer and PTH/9-PTH could form π–π interaction, thus improving the capture ability, the embedded Fe3O4 nanoparticles provided the possibility for rapid separation. The physical and chemical properties of the magnetic BIPH-PHEN were systematically characterized. The removal rate of magnetic BIPH-PHEN towards PTH and 9-PTH was 85.65 % and 98.52 %, respectively (PTH or 9-PTH: 8 mg/L; Adsorbent: 0.2 g/L). The DFT calculations including energy calculations and electrostatic potential distribution analyzed the different bonding modes and proposed the most possible bonding modes in the adsorbent/adsorbate system. Moreover, the LUMO and HOMO orbits combined with energy gaps analysis proved the existence and specific types of the π–π interaction. The monolayer adsorption occurred on the homogeneous magnetic BIPH-PHEN surface, simultaneously the chemisorption was dominant. This work not only proposed new sights on assembling magnetic Schiff base polymer for removing polycyclic aromatic hydrocarbons, but also provided a deeper understanding of intramolecular interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.