Abstract

To overcome the performance degradation in hardware neural networks (NNs) with non-ideal synapse devices, we proposed a novel neuromorphic architecture with both TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> -based interfacial RRAM and CBRAM-based filamentary RRAM for highly accurate NN training and long-term inference reliability. We used a threshold-triggered training scheme, in which interfacial and filamentary RRAMs were programmed in a complementary fashion. This took advantage of the long retention time of the filamentary RRAM and the high-resolution, symmetric weight update in the interfacial RRAM. Additional evaluation of device parameters, such as linearity, precision, variation, and retention time, was conducted. An excellent pattern recognition accuracy of ~97% was achieved during training with the MNIST dataset. Thus, reliable inference accuracy after training was maintained using the filamentary RRAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.