Abstract
Expecting to gain an excellent operating temperature window and superior catalytic activity of the catalyst in SCR reaction, the Fe-Ce bimetallic oxide catalyst was firstly prepared and sulfated with two different sulfation strategies by H2SO4. It is interestingly found that both the two sulfation strategies can significantly broaden the operating temperature window of the catalyst. In particular, the SFC and FCS both exhibit superior resistance to H2O + SO2, and the NOx conversion of the SFC even displays no changes in the coexistence of H2O and SO2. The characterization results show that different sulfation strategies can generate amorphous sulfate species rather than bulk sulfate species. Furthermore, more surface-adsorbed oxygen as well as higher contents of Ce3+ and Fe3+ can be obtained on the sulfated catalysts, especially for the SFC catalyst. Meanwhile, different sulfation strategies will progressively enhance the redox ability and amounts of strong acid sites, which will contribute to broadening the operating temperature window for the NH3-SCR reaction. Additionally, different sulfation methods do not change the reaction pathway of catalysts. However, the adsorption of ad-NH3 species and reactivity of ad-NOx species are significantly changed. These lead to the reaction pathway shifts to E-R direct over the SFC and the promotion of E-R and L-H mechanisms over the FCS catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.