Abstract

Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO2@AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO2, were designed and synthesized. It is found that the RL value of the MC is almost lower than −10 dB. Furthermore, the RL value was able to achieve −18.9 dB with an effective bandwidth (−10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call