Abstract
Ti4+-doped V2O5 films with nanowires on top and a dense, long nanorod layer on the bottom were successfully fabricated using the spin-coating route. During the electrochromic cycling, charge transfer resistance (Rct) decreases while ion-diffusion ability (KΩ) rapidly drops in the first ten cycles and then levels off. Low Rct and morphology of nanowires collaboratively improved the electrochromic behavior of Ti4+-doped V2O5 films by enhancing the charge transfer speed and minimizing polarization and dissolution. The obtained Ti4+-doped V2O5 film shows better electrochromic properties than the undoped V2O5 film, with a coloration efficiency (CE) of 34.15 cm2/C, coloration time of 9.00 s, and cyclic retention of 82.6% at cycle 100. In contrast, the corresponding values for the undoped V2O5 film were 23.57 cm2/C, 13.16 s, and 43.6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.