Abstract

The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

Highlights

  • Innovative and constructive doping into nanomaterials has attracted considerable attention, because a specific dopant could bring a revolutionary change on the materials’ properties and applications, such as in the fields of energy storage [1,2], photovoltaics [3,4], and biosensor [5]

  • Exfoliation of bulk BN to few-layered or mono-layered hexagonal boron nitride nanosheets (h-BNNSs) In a typical exfoliation process, the bulk boron nitride (BN) powders (0.25 g) were dispersed in a solvent of IPA contained in a 100-mL round-bottomed flask, and as-formed solution was heated at 50°C for 24 h under magnetic stirring

  • The low-magnification SEM image in Figure 1a presents the overall morphology of the precursor, which demonstrates that the bulk BN powders consist of irregular shapes and a few of thick flakes with lateral sizes ranging from hundreds of nanometers to several micrometers

Read more

Summary

Introduction

Innovative and constructive doping into nanomaterials has attracted considerable attention, because a specific dopant could bring a revolutionary change on the materials’ properties and applications, such as in the fields of energy storage [1,2], photovoltaics [3,4], and biosensor [5]. In contrast to the comprehensive researches on graphene [6,11,12,13], especially the breakthrough in semiconductor devices [14,15], the study on h-BNNSs, including their exfoliation, properties (by doping or functionalizing), and applications, is in its infancy This may attribute to the ‘lip-lip’ ionic characteristic of the bonding between neighboring boron nitride (BN) layers [10], which is stronger than the weak Van der Waals force between graphene layers and the wide band gap of h-BNNS (approximately 4–6 eV) [16], making it as an insulator.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.