Abstract
There is a CW complex 𝒯(𝑋), which gives a rational homotopical classification of almost free toral actions on spaces in the rational homotopy type of X associated with rational toral ranks and also presents certain relations in them. We call it the rational toral rank complex of X. It represents a variety of toral actions. In this note, we will give effective 2-dimensional examples of it when X is a finite product of odd spheres. This is a combinatorial approach in rational homotopy theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.