Abstract

AbstractPeridynamics is a recently proposed continuum theory based on a non local approach and formulated with integral equations. The theory is suitable for dealing with crack propagation in solid materials. The original peridynamic formulation regarded dynamic problems and was adapted to the static case mainly using a relaxation method by introducing a substantial amount of numerical damping in the time integration. In the present work the implementation of the theory within an implicit code for static crack propagation phenomena based on the Newton-Raphson method is presented and applied to several examples of static crack propagation equilibrium problems. Results obtained with the newly developed procedure are presented for various structural configurations, with different boundary and load conditions and quantitatively compared to published data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.