Abstract

Color transfer, which plays a key role in image editing, has attracted noticeable attention recently. It has remained a challenge to date due to various issues such as time-consuming manual adjustments and prior segmentation issues. In this paper, we propose to model color transfer under a probability framework and cast it as a parameter estimation problem. In particular, we relate the transferred image with the example image under the Gaussian Mixture Model (GMM) and regard the transferred image color as the GMM centroids. We employ the Expectation-Maximization (EM) algorithm (E-step and M-step) for optimization. To better preserve gradient information, we introduce a Laplacian based regularization term to the objective function at the M-step which is solved by deriving a gradient descent algorithm. Given the input of a source image and an example image, our method is able to generate multiple color transfer results with increasing EM iterations. Extensive experiments show that our approach generally outperforms other competitive color transfer methods, both visually and quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.