Abstract
In this Letter, we propose an experimental scheme for the observation of a quantum anomaly--quantum-mechanical symmetry breaking--in a two-dimensional harmonically trapped Bose gas. The anomaly manifests itself in a shift of the monopole excitation frequency away from the value dictated by the Pitaevskii-Rosch dynamical symmetry [L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1997)]. While the corresponding classical Gross-Pitaevskii equation and the hydrodynamic equations derived from it do exhibit this symmetry, it is--as we show in our paper--violated under quantization. The resulting frequency shift is of the order of 1% of the carrier, well in reach for modern experimental techniques. We propose using the dipole oscillations as a frequency gauge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.