Abstract
The presence of fog in an image reduces contrast which can be considered a nuisance in imaging applications, however, we consider this useful information for image enhancement and scene understanding. In this paper, we present a new method for estimating depth from fog in a single image and single image fog removal. We use an example based approach that is trained from data with known fog and depth. A data driven method and physics based model are used to develop the example based learning framework for single image fog removal. In addition, we account for various colors of fog by using a linear transformation of the RGB colorspace. This approach has the flexibility to learn from various scenes and relaxes the common constraint of fixed camera position. We present depth estimations and fog removal from a single image with good results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.