Abstract

BackgroundPorous titanium alloy scaffold fabricated by 3D printing technology could induce osseointegration well to repair bone defect during early postoperative period. However, trabecular histomorphological features and chemical compositions of ingrowth bone in the long term after surgery still lacked in-depth research.MethodsFourteen New Zealand rabbits were divided into two groups (7 rabbits in surgery group and 7 rabbits in control group). A 3D-printed porous titanium alloy scaffold was implanted into right femoral condyle of each rabbit in the surgery group. Preload was produced at the surface between bone tissue and scaffold through interference assembly during implantation process. Rabbits in the control group were feed free. All rabbits were sacrificed to extract femoral condyles at week 12 after surgery. All right femoral condyles were performed micro-CT scanning to test bone mineral density (BMD) and trabecular histomorphological parameters, including bone volume fraction (BV/TV), bone surface/volume ratio (BS/BV), bone surface density (BS/TV), structure model index (SMI), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), porosity (PO), connectivity density (Conn.Dn), and degree of anisotropy (DA). Scanning electron microscope was used to observe osteogenesis peri-scaffold. Fourier transform infrared spectroscopy (FTIR) scanning was performed to analyze chemical compositions of peri-scaffold trabeculae. All trabecular morphological parameters and BMDs were statistically analyzed between surgery group and control group.ResultsThe pores of scaffold were filled with ingrowth bone tissues after 12 weeks osseointegration. However, the mean BMD peri-scaffold in surgery group was 800 ± 20 mg/cm3, which was 18.37% lower than that in the control group. There was a significant decrease in BV/TV, Tb.N, and BS/TV, and there was a significant increase in Tb.Sp and PO between the surgery group and control group (p < 0.05). There were no significant differences in Tb.Th, SMI, Conn.Dn, BS/BV, and DA. Although ingrowth of bone tissue was very effective, some fragmented connective tissues were still found instead of bone tissues on the partial beams of scaffolds through SEM images. It was found from FTIR that there was no significant hydroxyapatite peak signal in surgery group. Collagen in the control group mainly existed as cross-link structure, while non-cross-link structure in the surgery group.ConclusionsPreload could promote the same good osseointegration ability as chemical surface modification method in the early term after surgery, and better osseointegration effect than chemical surface modification method in the mid-long term after surgery. However, histomorphological features of peri-scaffold trabeculae were still in deterioration and low collagen maturity caused by stress shielding. It was suggested from this study that extra physical training should be taken to stimulate the bone remodeling process for recovering to a healthy level.

Highlights

  • Large bone defects caused by trauma and bone tumor cannot heal by itself rehabilitation mechanism existed in bone tissue [1]

  • Histomorphological features of peri-scaffold trabeculae were still in deterioration and low collagen maturity caused by stress shielding

  • It was suggested from this study that extra physical training should be taken to stimulate the bone remodeling process for recovering to a healthy level

Read more

Summary

Introduction

Large bone defects caused by trauma and bone tumor cannot heal by itself rehabilitation mechanism existed in bone tissue [1]. With the introduction of 3D printing technology, porous titanium scaffolds with similar micro-structural features and mechanical properties could be manufactured in accordance with defect dimensions [3,4,5]. Osteoblast migration was induced to perform osteogenesis differentiation closely integrated on the inner and outer surfaces of scaffolds after implantation [6]. This process of bone ingrowth without interposed soft tissue was called osseointegration. 3D printing technology could reduce elastic modulus of porous titanium scaffold significantly to fit bone tissue. Porous titanium alloy scaffold fabricated by 3D printing technology could induce osseointegration well to repair bone defect during early postoperative period. Trabecular histomorphological features and chemical compositions of ingrowth bone in the long term after surgery still lacked in-depth research

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call